Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0236923, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289112

RESUMO

Despite the established concept of the human mammary gland (MG) as a habitat with its own microbiota, the exact mechanism of MG colonization is still elusive and a well-characterized in vitro model would reinforce studies of the MG microbiota development. We aimed to establish and characterize an in vitro cell model for studying MAmmary Gland mIcrobial Colonization (MAGIC) model. We used the immortalized cell line MCF10A, which expresses the strong polarized phenotype similar to MG ductal epithelium when cultured on a permeable support (Transwell). We analyzed the surface properties of the MAGIC model by gene expression analysis of E-cadherin, tight junction proteins, and mucins and by scanning electron microscopy. To demonstrate the applicability of the model, we tested the adhesion capability of the whole human milk (HM) microbial community and the cellular response of the model when challenged directly with raw HM samples. MCF10A on permeable supports differentiated and formed a tight barrier, by upregulation of CLDN8, MUC1, MUC4, and MUC20 genes. The surface of the model was covered with mucins and morphologically diverse with at least two cell types and two types of microvilli. Cells in the MAGIC model withstood the challenge with heat-treated HM samples and responded differently to the imbalanced HM microbiota by distinctive cytokine response. The microbial profile of the bacteria adhered on the MAGIC model reflected the microbiological profile of the input HM samples. The well-studied MAGIC model could be useful for studies of bacterial attachment to the MG and for in vitro studies of biofilm formation and microbiota development.IMPORTANCEThe MAGIC model may be particularly useful for studies of bacterial attachment to the surface of the mammary ducts and for in vitro studies of biofilm formation and the development of the human mammary gland (MG) microbiota. The model is also useful for immunological studies of the interaction between bacteria and MG cells. We obtained pioneering information on which of the bacteria present in the raw human milk (HM) were able to attach to the epithelium treated directly with raw HM, as well as on the effects of bacteria on the MG epithelial cells. The MAGIC cell model also offers new opportunities for research in other areas of MG physiology, such as the effects of bioactive milk components on microbial colonization of the MG, mastitis prevention, and studies of probiotic development. Since resident MG bacteria may be an important factor in breast cancer development, the MAGIC in vitro tool also offers new opportunities for cancer research.


Assuntos
Glândulas Mamárias Humanas , Microbiota , Feminino , Humanos , Leite Humano , Citocinas , Bactérias , Mucinas
2.
Int J Radiat Biol ; 100(1): 108-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37812192

RESUMO

The investigation of the microbial community change in the biofilm, growing on the walls of a containment tank of TRIGA nuclear reactor revealed a thriving community in an oligotrophic and heavy-metal-laden environment, periodically exposed to high pulses of ionizing radiation (IR). We observed a vertical IR resistance/tolerance stratification of microbial genera, with higher resistance and less diversity closer to the reactor core. One of the isolated Bacillus strains survived 15 kGy of combined gamma and proton radiation, which was surprising. It appears that there is a succession of genera that colonizes or re-colonizes new or IR-sterilized surfaces, led by Bacilli and/or Actinobacteria, upon which a photoautotrophic and diazotrophic community is established within a fortnight. The temporal progression of the biofilm community was evaluated also as a proxy for microbial response to radiological contamination events. This indicated there is a need for better dose-response models that could describe microbial response to contamination events. Overall, TRIGA nuclear reactor offers a unique insight into IR microbiology and provides useful means to study relevant microbial dose-thresholds during and after radiological contamination.


Assuntos
Bacillus , Bactérias , Reatores Nucleares , Raios gama/efeitos adversos , Biofilmes
3.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37877984

RESUMO

During the 2021 European Food Safety Authority coordinated harmonized monitoring of antimicrobial resistance in Campylobacter species in Slovenia, five Campylobacter-like strains were cultured from caeca of a total of 104 domestic pigs that could not be identified using the standard-prescribed biochemical tests or MALDI-TOF MS. The isolates were obtained using the standard ISO 10272 procedure for the isolation of thermotolerant Campylobacter with prolonged cultivation time. Small Campylobacter-like colonies were observed on mCCDA and CASA agar plates after 2-4 days of incubation; dark-field microscopy revealed relatively big spirilli-shaped bacteria exhibiting characteristic Campylobacter-like motility. The cells were 1.5-3 µm long and 0.5-0.7 µm wide, Gram-negative, oxidase-positive and catalase-positive. MALDI-TOF mass spectra were distinctive and consistent, but with low MALDI-TOF MS log scores and the closest matches being those of Campylobacter hyointestinalis and Campylobacter fetus. All five strains underwent whole-genome sequencing. Analysis of 16S rRNA gene sequences revealed that the isolates were most similar (98.3-98.4 % identity) to Campylobacter lanienae. Pairwise average nucleotide identity (ANI) values revealed that the five studied strains shared pairwise ANI of 96.2-96.5 % but were clearly distinct from the previously described Campylobacter species (ANI ≤72.8 %). The core genome-based phylogeny confirmed that the new strains form a distinct and well-supported clade within the genus Campylobacter. The conducted polyphasic taxonomic analysis confirmed that the five strains represent a novel Campylobacter species for which the name Campylobacter magnus sp. nov. is suggested, with strain 46386T (=DSM 115534T=CCUG 76865T) as the type strain.


Assuntos
Campylobacter , Sus scrofa , Suínos , Animais , RNA Ribossômico 16S/genética , Filogenia , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Campylobacter/genética , Nucleotídeos
4.
Microorganisms ; 11(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36838297

RESUMO

The self-binding of bacterial cells, or autoaggregation, is, together with surface colonization, one of the first steps in the formation of a mature biofilm. In this work, the autoaggregation of B. subtilis in dilute bacterial suspensions was studied. The dynamics of cell lysis, eDNA release, and bacterial autoaggregate assembly were determined and related to the spatial autocorrelation of bacterial cells in dilute planktonic bacterial suspensions. The non-random distribution of cells was associated with an eDNA network, which stabilized the initial bacterial cell-cell aggregates. Upon the addition of DNase I, the aggregates were dispersed. The release of eDNA during cell lysis allows for the entrapment of bacterial drifters at a radius several times the size of the dying bacteria. The size of bacterial aggregates increased from 2 to about 100 µm in diameter in dilute bacterial suspensions. The results suggest that B. subtilis cells form previously unnoticed continuum of autoaggregate structures during planktonic growth.

5.
Bioengineering (Basel) ; 10(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36829702

RESUMO

Subchondroplasty is a new minimally invasive surgical technique developed to treat bone marrow lesions (BML) and early osteoarthritis (OA). During the procedure, engineered calcium phosphate compound (CPC) is injected. It is claimed by the manufacturer that during the healing process, the CPC is replaced with new bone. The purpose of this study was to verify the replacement of CPC with new bone after subchondroplasty for the first time in humans. A 76-year old woman was referred for resistant medial knee pain. Standing radiographs showed varus knee OA and magnetic resonance imaging (MRI) revealed BML. She was treated with subchondroplasty of medial femoral condyle. Excellent relief of pain was achieved after procedure. Afterwards, the pain worsened, the radiographs confirmed the OA progression and the patient was treated with a total knee arthroplasty (TKA) 4 years after primary procedure. The resected bone was examined histologically and with micro-computed tomography (CT). Histologically, bone trabeculae of subcortical bone were embedded in the amorphous mass. However, no signs of CPC resorption and/or bone replacement have been found with micro-CT. In short term, excellent pain relief could be expected after the subchondroplasty procedure. However, there was no replacement of CPC with bone and the technique probably did not influence the natural process of knee OA.

6.
Fungal Biol Biotechnol ; 9(1): 16, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320088

RESUMO

Extracellular vesicles (EVs) are increasingly recognized as an important mechanism for cell-cell interactions. Their role in fungi is still poorly understood and they have been isolated from only a handful of species. Here, we isolated and characterized EVs from Aureobasidium pullulans, a biotechnologically important black yeast-like fungus that is increasingly used for biocontrol of phytopathogenic fungi and bacteria. After optimization of the isolation protocol, characterization of EVs from A. pullulans by transmission electron microscopy (TEM) revealed a typical cup-shaped morphology and different subpopulations of EVs. These results were confirmed by nanoparticle tracking analysis (NTA), which revealed that A. pullulans produced 6.1 × 108 nanoparticles per milliliter of culture medium. Proteomic analysis of EVs detected 642 proteins. A small fraction of them had signal peptides for secretion and transmembrane domains. Proteins characteristic of different synthesis pathways were found, suggesting that EVs are synthesized by multiple pathways in A. pullulans. Enrichment analysis using Gene Ontology showed that most of the proteins found in the EVs were associated with primary metabolism. When sequencing the small RNA fraction of A. pullulans EVs, we found two hypothetical novel mil-RNAs. Finally, we tested the biocontrol potential of EVs from A. pullulans. The EVs did not inhibit the germination of spores of three important phytopathogenic fungi-Botrytis cinerea, Colletotrichum acutatum, and Penicillium expansum. However, exposure of grown cultures of C. acutatum and P. expansum to A. pullulans EVs resulted in visible changes in morphology of colonies. These preliminary results suggest that EVs may be part of the antagonistic activity of A. pullulans, which is so far only partially understood. Thus, the first isolation and characterization of EVs from A. pullulans provides a starting point for further studies of EVs in the biotechnologically important traits of the biocontrol black fungus A. pullulans in particular and in the biological role of fungal EVs in general.

7.
Commun Biol ; 5(1): 1286, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434275

RESUMO

Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.


Assuntos
Bacillus thuringiensis , Bacteriófagos , Animais , Humanos , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Bacteriófagos/genética , Sorogrupo , Lisogenia/genética , DNA/metabolismo
8.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36367514

RESUMO

Seven Helicobacter-like isolates were cultured from caecal contents of 100 domestic pigs (Sus scrofa domesticus) sampled as part of the EFSA-coordinated harmonized monitoring of antimicrobial resistance in Campylobacter sp. in 2015. The bacteria were isolated using the standard ISO 10272 procedure for the isolation of thermotolerant Campylobacter with extended incubation time and formed small, grey, moist and flat colonies with a metallic sheen (small Campylobacter-like colonies) on modified Charcoal-Cefoperazone-Deoxycholate Agar (mCCDA) and Skirow agar plates. Morphologically, the bacterial cells were spirilli-shaped and highly motile, 1-2 µm long and ≤0.5 µm wide, Gram-negative, oxidase-positive and catalase-positive. They could not be identified using the standard-prescribed biochemical tests and had uniform, unique and reproducible MALDI-TOF mass spectra that most closely matched those of Helicobacter pullorum. Three strains (11154-15T, 14348-15 and 16470-15) underwent whole-genome sequencing. Analysis of 16S rRNA gene sequences revealed a high similarity (≥99.8 % identity) to Helicobacter canadensis. Pairwise average nucleotide identity (ANI) values revealed that the three studied strains were closely related (ANI ≥98.9 %), but distinct from the previously described Helicobacter species (ANI ≤90.6 %). The core genome-based phylogeny confirmed that the new strains form a distinct clade most closely related to H. canadensis. The conducted polyphasic taxonomic analysis confirmed that the three strains represent a novel Helicobacter species for which the name Helicobacter colisuis sp. nov. is suggested, with strain 11154-15T (= DSM 113688T = CCUG 76053T) as the type strain.


Assuntos
Campylobacter , Helicobacter , Animais , Suínos , RNA Ribossômico 16S/genética , Sus scrofa , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ágar , Filogenia , Análise de Sequência de DNA , Composição de Bases , Ácidos Graxos/química
9.
Front Microbiol ; 13: 926558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910647

RESUMO

Proteus anguinus is a neotenic cave salamander, endemic to the Dinaric Karst and a symbol of world natural heritage. It is classified as "vulnerable" by the International Union for Conservation of Nature (IUCN) and is one of the EU priority species in need of strict protection. Due to inaccessibility of their natural underground habitat, scientific studies of the olm have been conducted mainly in captivity, where the amphibians are particularly susceptible to opportunistic microbial infections. In this report, we focused on the diversity of cultivable commensal fungi isolated from the skin of asymptomatic and symptomatic animals obtained from nature (20 specimens) and captivity (22 specimens), as well as from underground water of two karstic caves by direct water filtration and by exposure of keratin-based microbial baits and subsequent isolation from them. In total 244 fungal isolates were recovered from the animals and additional 153 isolates were obtained from water samples. Together, these isolates represented 87 genera and 166 species. Symptomatic animals were colonized by a variety of fungal species, most of them represented by a single isolate, including genera known for their involvement in chromomycosis, phaeohyphomycosis and zygomycosis in amphibians: Acremonium, Aspergillus, Cladosporium, Exophiala, Fusarium, Mucor, Ochroconis, Phialophora and Penicillium. One symptomatic specimen sampled from nature was infected by the oomycete Saprolegnia parasitica, the known causative agent of saprolegniosis. This is the first comprehensive report on cultivable skin mycobiome of this unique amphibian in nature and in captivity, with an emphasis on potentially pathogenic fungi and oomycetes.

10.
Nucleic Acids Res ; 50(19): e113, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36029110

RESUMO

Encapsulation of a selected DNA molecule in a cell has important implications for bionanotechnology. Non-viral proteins that can be used as nucleic acid containers include proteinaceous subcellular bacterial microcompartments (MCPs) that self-assemble into a selectively permeable protein shell containing an enzymatic core. Here, we adapted a propanediol utilization (Pdu) MCP into a synthetic protein cage to package a specified DNA segment in vivo, thereby enabling subsequent affinity purification. To this end, we engineered the LacI transcription repressor to be routed, together with target DNA, into the lumen of a Strep-tagged Pdu shell. Sequencing of extracted DNA from the affinity-isolated MCPs shows that our strategy results in packaging of a DNA segment carrying multiple LacI binding sites, but not the flanking regions. Furthermore, we used LacI to drive the encapsulation of a DNA segment containing operators for LacI and for a second transcription factor.


Assuntos
Bactérias , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bactérias/genética , Propilenoglicol/química , Propilenoglicol/metabolismo , DNA/genética
11.
NPJ Biofilms Microbiomes ; 8(1): 25, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35414070

RESUMO

In this study, we link pellicle development at the water-air interface with the vertical distribution and viability of the individual B. subtilis PS-216 cells throughout the water column. Real-time interfacial rheology and time-lapse confocal laser scanning microscopy were combined to correlate mechanical properties with morphological changes (aggregation status, filament formation, pellicle thickness, spore formation) of the growing pellicle. Six key events were identified in B. subtilis pellicle formation that are accompanied by a major change in viscoelastic and morphology behaviour of the pellicle. The results imply that pellicle development is a multifaceted response to a changing environment induced by bacterial growth that causes population redistribution within the model system, reduction of the viable habitat to the water-air interface, cell development, and morphogenesis. The outcome is a build-up of mechanical stress supporting structure that eventually, due to nutrient deprivation, reaches the finite thickness. After prolonged incubation, the formed pellicle collapses, which correlates with the spore releasing process. The pellicle loses the ability to support mechanical stress, which marks the end of the pellicle life cycle and entry of the system into the dormant state.


Assuntos
Bacillus subtilis , Biofilmes , Bacillus subtilis/fisiologia , Água
12.
Gigascience ; 112022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380661

RESUMO

BACKGROUND: Lightless caves can harbour a wide range of living organisms. Cave animals have evolved a set of morphological, physiological, and behavioural adaptations known as troglomorphisms, enabling their survival in the perpetual darkness, narrow temperature and humidity ranges, and nutrient scarcity of the subterranean environment. In this study, we focused on adaptations of skull shape and sensory systems in the blind cave salamander, Proteus anguinus, also known as olm or simply proteus-the largest cave tetrapod and the only European amphibian living exclusively in subterranean environments. This extraordinary amphibian compensates for the loss of sight by enhanced non-visual sensory systems including mechanoreceptors, electroreceptors, and chemoreceptors. We compared developmental stages of P. anguinus with Ambystoma mexicanum, also known as axolotl, to make an exemplary comparison between cave- and surface-dwelling paedomorphic salamanders. FINDINGS: We used contrast-enhanced X-ray computed microtomography for the 3D segmentation of the soft tissues in the head of P. anguinus and A. mexicanum. Sensory organs were visualized to elucidate how the animal is adapted to living in complete darkness. X-ray microCT datasets were provided along with 3D models for larval, juvenile, and adult specimens, showing the cartilage of the chondrocranium and the position, shape, and size of the brain, eyes, and olfactory epithelium. CONCLUSIONS: P. anguinus still keeps some of its secrets. Our high-resolution X-ray microCT scans together with 3D models of the anatomical structures in the head may help to elucidate the nature and origin of the mechanisms behind its adaptations to the subterranean environment, which led to a series of troglomorphisms.


Assuntos
Proteidae , Animais , Escuridão , Urodelos , Raios X
13.
Parasitology ; 149(2): 193-202, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234602

RESUMO

In parasite­host interactions host species may differ in their ability to fight parasitic infections, while other ecological interactions, including competition, may differentially alter their physiological state, making them even more susceptible to parasites. In this study, we analyse the haemogregarine blood parasites infecting two competing lizard species, Iberolacerta horvathi and Podarcis muralis, and explore host­parasite relationships under different host competition scenarios. Both species were infected with haemogregarine parasites belonging to the genus Karyolysus. Using the 18S rRNA gene, six new Karyolysus haplotypes were identified clustering with other Central and Eastern European samples, and widely shared between both lizard hosts. Haemogregarine infections were detected at all sampled sites with over 50% of individuals parasitized. Overall, I. horvathi was more frequently and also more intensely parasitized than P. muralis, with higher infection rates observed in syntopy. Males of both species tended to be more frequently infected and showed a higher infection intensity than conspecific females. The results suggest that parasitisation by haemogregarines may be relevant in the dynamics of the competitive relationship between these lizard species. More studies, including immunological response analysis, and the identification of the vectors are needed to better understand host­parasite relationships and competition.


Assuntos
Eucoccidiida , Lagartos , Animais , Eucoccidiida/genética , Feminino , Haplótipos , Interações Hospedeiro-Parasita , Humanos , Lagartos/parasitologia , Masculino , Filogenia , RNA Ribossômico 18S/genética
14.
Nanoscale ; 14(9): 3537-3544, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35174842

RESUMO

Two different morphologies of ferroelectric bismuth titanate (Bi4Ti3O12) nanoparticles, i.e., nanoplatelets and nanowires, were synthesized by changing the concentration of NaOH during a hydrothermal treatment of precipitated Ti4+ and Bi3+ ions. The nanoparticles' crystal structures were characterized using atomic-resolution imaging with a CS-probe-corrected scanning-transmission electron microscope in combination with X-ray diffractometry and Raman spectroscopy. The nanoplatelets (10 nm thick and from 50 nm to 200 nm wide) exhibit the Aurivillius-type layered-perovskite crystal structure that is characteristic of Bi4Ti3O12, whereas the nanowires (from 15 nm to 35 nm wide and from several hundreds of nm to several µm long) exhibit an entirely new structure with an orthorhombic unit cell (a = 3.804(1) Å, b = 11.816(3) Å, and c = 9.704(1) Å). The nanowire structure is composed of two structural layers alternating along the orthorhombic c-direction: a structural layer composed of two parallel layers of Bi atoms that resembles the (Bi2O2)2+ layer of the Aurivillius structure, and a structural layer composed of two parallel layers of Ti atoms, where every sixth Ti is replaced with Bi. Observations of the ferroelectric domains with transmission electron and piezo-response force microscopy indicated the ferroelectric nature of both nanostructures. The nanowire structure is a metastable polymorph of the bismuth titanate stabilized at the nanoscale. With annealing at temperatures above 500 °C the nanowire structure topotactically transforms into the Aurivillius structure.

15.
Ultrason Sonochem ; 83: 105919, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35077964

RESUMO

The applications of bacterial sonolysis in industrial settings are plagued by the lack of the knowledge of the exact mechanism of action of sonication on bacterial cells, variable effectiveness of cavitation on bacteria, and inconsistent data of its efficiency. In this study we have systematically changed material properties of E. coli cells to probe the effect of different cell wall layers on bacterial resistance to ultrasonic irradiation (20 kHz, output power 6,73 W, horn type, 3 mm probe tip diameter, 1 ml sample volume). We have determined the rates of sonolysis decay for bacteria with compromised major capsular polymers, disrupted outer membrane, compromised peptidoglycan layer, spheroplasts, giant spheroplasts, and in bacteria with different cell physiology. The non-growing bacteria were 5-fold more resistant to sonolysis than growing bacteria. The most important bacterial cell wall structure that determined the outcome during sonication was peptidoglycan. If peptidoglycan was remodelled, weakened, or absent the cavitation was very efficient. Cells with removed peptidoglycan had sonolysis resistance equal to lipid vesicles and were extremely sensitive to sonolysis. The results suggest that bacterial physiological state as well as cell wall architecture are major determinants that influence the outcome of bacterial sonolysis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Bactérias , Parede Celular/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo
16.
ISME Commun ; 2(1): 45, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37938728

RESUMO

The phylum Chlamydiae consists of obligate intracellular bacteria including major human pathogens and diverse environmental representatives. Here we investigated the Rhabdochlamydiaceae, which is predicted to be the largest and most diverse chlamydial family, with the few described members known to infect arthropod hosts. Using published 16 S rRNA gene sequence data we identified at least 388 genus-level lineages containing about 14 051 putative species within this family. We show that rhabdochlamydiae are mainly found in freshwater and soil environments, suggesting the existence of diverse, yet unknown hosts. Next, we used a comprehensive genome dataset including metagenome assembled genomes classified as members of the family Rhabdochlamydiaceae, and we added novel complete genome sequences of Rhabdochlamydia porcellionis infecting the woodlouse Porcellio scaber, and of 'Candidatus R. oedothoracis' associated with the linyphiid dwarf spider Oedothorax gibbosus. Comparative analysis of basic genome features and gene content with reference genomes of well-studied chlamydial families with known host ranges, namely Parachlamydiaceae (protist hosts) and Chlamydiaceae (human and other vertebrate hosts) suggested distinct niches for members of the Rhabdochlamydiaceae. We propose that members of the family represent intermediate stages of adaptation of chlamydiae from protists to vertebrate hosts. Within the genus Rhabdochlamydia, pronounced genome size reduction could be observed (1.49-1.93 Mb). The abundance and genomic distribution of transposases suggests transposable element expansion and subsequent gene inactivation as a mechanism of genome streamlining during adaptation to new hosts. This type of genome reduction has never been described before for any member of the phylum Chlamydiae. This study provides new insights into the molecular ecology, genomic diversity, and evolution of representatives of one of the most divergent chlamydial families.

17.
Ann N Y Acad Sci ; 1507(1): 5-11, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480358

RESUMO

Deciphering the genetic code of organisms with unusual phenotypes can help answer fundamental biological questions and provide insight into mechanisms relevant to human biomedical research. The cave salamander Proteus anguinus (Urodela: Proteidae), also known as the olm, is an example of a species with unique morphological and physiological adaptations to its subterranean environment, including regenerative abilities, resistance to prolonged starvation, and a life span of more than 100 years. However, the structure and sequence of the olm genome is still largely unknown owing to its enormous size, estimated at nearly 50 gigabases. An international Proteus Genome Research Consortium has been formed to decipher the olm genome. This perspective provides the scientific and biomedical rationale for exploring the olm genome and outlines potential outcomes, challenges, and methodological approaches required to analyze and annotate the genome of this unique amphibian.


Assuntos
Evolução Molecular , Genoma/genética , Longevidade/fisiologia , Doenças Metabólicas/genética , Proteidae/genética , Regeneração/fisiologia , Animais , Pesquisa em Genética , Humanos , Doenças Metabólicas/metabolismo
18.
Toxins (Basel) ; 13(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209983

RESUMO

Ostreolysin A6 (OlyA6) is a protein produced by the oyster mushroom (Pleurotus ostreatus). It binds to membrane sphingomyelin/cholesterol domains, and together with its protein partner, pleurotolysin B (PlyB), it forms 13-meric transmembrane pore complexes. Further, OlyA6 binds 1000 times more strongly to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with PlyB, OlyA6 has potent and selective insecticidal activity against the western corn rootworm. We analysed the histological alterations of the midgut wall columnar epithelium of western corn rootworm larvae fed with OlyA6/PlyB, which showed vacuolisation of the cell cytoplasm, swelling of the apical cell surface into the gut lumen, and delamination of the basal lamina underlying the epithelium. Additionally, cryo-electron microscopy was used to explore the membrane interactions of the OlyA6/PlyB complex using lipid vesicles composed of artificial lipids containing CPE, and western corn rootworm brush border membrane vesicles. Multimeric transmembrane pores were formed in both vesicle preparations, similar to those described for sphingomyelin/cholesterol membranes. These results strongly suggest that the molecular mechanism of insecticidal action of OlyA6/PlyB arises from specific interactions of OlyA6 with CPE, and the consequent formation of transmembrane pores in the insect midgut.


Assuntos
Besouros/efeitos dos fármacos , Proteínas Fúngicas/toxicidade , Proteínas Hemolisinas/toxicidade , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Animais , Besouros/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Larva/metabolismo , Esfingomielinas/metabolismo
19.
Nat Commun ; 12(1): 3457, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34103505

RESUMO

Bacillus subtilis is a soil bacterium that is competent for natural transformation. Genetically distinct B. subtilis swarms form a boundary upon encounter, resulting in killing of one of the strains. This process is mediated by a fast-evolving kin discrimination (KD) system consisting of cellular attack and defence mechanisms. Here, we show that these swarm antagonisms promote transformation-mediated horizontal gene transfer between strains of low relatedness. Gene transfer between interacting non-kin strains is largely unidirectional, from killed cells of the donor strain to surviving cells of the recipient strain. It is associated with activation of a stress response mediated by sigma factor SigW in the donor cells, and induction of competence in the recipient strain. More closely related strains, which in theory would experience more efficient recombination due to increased sequence homology, do not upregulate transformation upon encounter. This result indicates that social interactions can override mechanistic barriers to horizontal gene transfer. We hypothesize that KD-mediated competence in response to the encounter of distinct neighbouring strains could maximize the probability of efficient incorporation of novel alleles and genes that have proved to function in a genomically and ecologically similar context.


Assuntos
Bacillus subtilis/genética , Transferência Genética Horizontal , Adaptação Fisiológica , Membrana Celular/metabolismo , DNA Bacteriano/genética , Genoma Bacteriano , Mutação/genética , Nucleotídeos/genética , Recombinação Genética/genética , Estresse Fisiológico , Transformação Genética , Regulação para Cima
20.
Sci Rep ; 11(1): 6572, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753805

RESUMO

Aegerolysins are proteins produced by bacteria, fungi, plants and protozoa. The most studied fungal aegerolysins share a common property of interacting with membranes enriched with cholesterol in combination with either sphingomyelin or ceramide phosphorylethanolamine (CPE), major sphingolipids in the cell membranes of vertebrates and invertebrates, respectively. However, genome analyses show a particularly high frequency of aegerolysin genes in bacteria, including the pathogenic genera Pseudomonas and Vibrio; these are human pathogens of high clinical relevance and can thrive in a variety of other species. The knowledge on bacterial aegerolysin-lipid interactions is scarce. We show that Pseudomonas aeruginosa aegerolysin RahU interacts with CPE, but not with sphingomyelin-enriched artificial membranes, and that RahU interacts with the insect cell line producing CPE. We report crystal structures of RahU alone and in complex with tris(hydroxymethyl)aminomethane (Tris), which, like the phosphorylethanolamine head group of CPE, contains a primary amine. The RahU structures reveal that the two loops proximal to the amino terminus form a cavity that accommodates Tris, and that the flexibility of these two loops is important for this interaction. We show that Tris interferes with CPE-enriched membranes for binding to RahU, implying on the importance of the ligand cavity between the loops and its proximity in RahU membrane interaction. We further support this by studying the interaction of single amino acid substitution mutants of RahU with the CPE-enriched membranes. Our results thus represent a starting point for a better understanding of the role of P. aeruginosa RahU, and possibly other bacterial aegerolysins, in bacterial interactions with other organisms.


Assuntos
Proteínas de Bactérias/química , Etanolaminas/química , Proteínas Fúngicas/química , Proteínas Hemolisinas/química , Modelos Moleculares , Conformação Proteica , Pseudomonas aeruginosa , Animais , Proteínas de Bactérias/metabolismo , Etanolaminas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Células Sf9 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...